arXiv:2303.13906 [math.NT]AbstractReferencesReviewsResources
Some congruences for $(\ell, k)$ and $(\ell, k, r)$-regular partitions
T Kathiravan, K Srinivas, Usha K Sangale
Published 2023-03-24Version 1
Let $b_{\ell, k}(n), b_{\ell, k, r}(n)$ count the number of $(\ell, k)$, $(\ell, k, r)$-regular partitions respectively. In this paper we shall derive infinite families of congruences for $b_{\ell, k}(n)$ modulo $2$ when $ (\ell, k) = (3,8), (4, 7)$, for $b_{\ell, k}(n)$ modulo $8$, modulo $9$ and modulo $12$ when $(\ell, k) = (4, 9)$ and $b_{\ell, k, r}(n)$ modulo $2$ when $(\ell, k, r) = (3, 5, 8)$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1502.06454 [math.NT] (Published 2015-02-23)
Arithmetic Identities and Congruences for Partition Triples with 3-cores
arXiv:1407.1297 [math.NT] (Published 2014-07-04)
Congruences of concave composition functions
Congruences involving generalized central trinomial coefficients