{ "id": "2303.13906", "version": "v1", "published": "2023-03-24T10:40:52.000Z", "updated": "2023-03-24T10:40:52.000Z", "title": "Some congruences for $(\\ell, k)$ and $(\\ell, k, r)$-regular partitions", "authors": [ "T Kathiravan", "K Srinivas", "Usha K Sangale" ], "categories": [ "math.NT" ], "abstract": "Let $b_{\\ell, k}(n), b_{\\ell, k, r}(n)$ count the number of $(\\ell, k)$, $(\\ell, k, r)$-regular partitions respectively. In this paper we shall derive infinite families of congruences for $b_{\\ell, k}(n)$ modulo $2$ when $ (\\ell, k) = (3,8), (4, 7)$, for $b_{\\ell, k}(n)$ modulo $8$, modulo $9$ and modulo $12$ when $(\\ell, k) = (4, 9)$ and $b_{\\ell, k, r}(n)$ modulo $2$ when $(\\ell, k, r) = (3, 5, 8)$.", "revisions": [ { "version": "v1", "updated": "2023-03-24T10:40:52.000Z" } ], "analyses": { "subjects": [ "11P83", "05A17" ], "keywords": [ "regular partitions", "congruences", "derive infinite families" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }