arXiv Analytics

Sign in

arXiv:2302.12701 [math.AP]AbstractReferencesReviewsResources

Function spaces for decoupling

Andrew Hassell, Pierre Portal, Jan Rozendaal, Po-Lam Yung

Published 2023-02-24Version 1

We introduce new function spaces $\mathcal{H}^{p,q;s}_{\mathrm{dec}}(\mathbb{R}^{n})$ that yield a natural reformulation of the $\ell^{q}$ decoupling inequalities for the sphere and the light cone. These spaces are invariant under the Euclidean half-wave propagators, but not under all Fourier integral operators unless $p=q$, in which case they coincide with the Hardy spaces for Fourier integral operators. We use these spaces to obtain improvements of the classical fractional integration theorem, and local smoothing estimates.

Related articles: Most relevant | Search more
arXiv:math/0509642 [math.AP] (Published 2005-09-27)
Function spaces associated with Schroedinger operators: the Poeschl-Teller potential
arXiv:2408.04513 [math.AP] (Published 2024-08-08)
Extensions of divergence-free fields in $\mathrm{L}^{1}$-based function spaces
arXiv:2007.00713 [math.AP] (Published 2020-07-01)
Embeddings of Function Spaces via the Caffarelli-Silvestre Extension, Capacities and Wolff potentials