arXiv:2302.12701 [math.AP]AbstractReferencesReviewsResources
Function spaces for decoupling
Andrew Hassell, Pierre Portal, Jan Rozendaal, Po-Lam Yung
Published 2023-02-24Version 1
We introduce new function spaces $\mathcal{H}^{p,q;s}_{\mathrm{dec}}(\mathbb{R}^{n})$ that yield a natural reformulation of the $\ell^{q}$ decoupling inequalities for the sphere and the light cone. These spaces are invariant under the Euclidean half-wave propagators, but not under all Fourier integral operators unless $p=q$, in which case they coincide with the Hardy spaces for Fourier integral operators. We use these spaces to obtain improvements of the classical fractional integration theorem, and local smoothing estimates.
Comments: 41 pages
Related articles: Most relevant | Search more
arXiv:math/0509642 [math.AP] (Published 2005-09-27)
Function spaces associated with Schroedinger operators: the Poeschl-Teller potential
arXiv:2408.04513 [math.AP] (Published 2024-08-08)
Extensions of divergence-free fields in $\mathrm{L}^{1}$-based function spaces
arXiv:2007.00713 [math.AP] (Published 2020-07-01)
Embeddings of Function Spaces via the Caffarelli-Silvestre Extension, Capacities and Wolff potentials