{ "id": "2302.12701", "version": "v1", "published": "2023-02-24T16:00:03.000Z", "updated": "2023-02-24T16:00:03.000Z", "title": "Function spaces for decoupling", "authors": [ "Andrew Hassell", "Pierre Portal", "Jan Rozendaal", "Po-Lam Yung" ], "comment": "41 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "We introduce new function spaces $\\mathcal{H}^{p,q;s}_{\\mathrm{dec}}(\\mathbb{R}^{n})$ that yield a natural reformulation of the $\\ell^{q}$ decoupling inequalities for the sphere and the light cone. These spaces are invariant under the Euclidean half-wave propagators, but not under all Fourier integral operators unless $p=q$, in which case they coincide with the Hardy spaces for Fourier integral operators. We use these spaces to obtain improvements of the classical fractional integration theorem, and local smoothing estimates.", "revisions": [ { "version": "v1", "updated": "2023-02-24T16:00:03.000Z" } ], "analyses": { "subjects": [ "42B35", "42B37", "35L05", "35S30" ], "keywords": [ "function spaces", "euclidean half-wave propagators", "decoupling", "classical fractional integration theorem", "fourier integral operators unless" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }