arXiv Analytics

Sign in

arXiv:2302.00312 [math.AP]AbstractReferencesReviewsResources

Boundedness of Fourier integral operators on classical function spaces

Anders Israelsson, Tobias Mattsson, Wolfgang Staubach

Published 2023-02-01Version 1

We investigate the global boundedness of Fourier integral operators with amplitudes in the general H\"ormander classes $S^{m}_{\rho, \delta}(\mathbb{R}^n)$, $\rho, \delta\in [0,1]$ and non-degenerate phase functions of arbitrary rank $\kappa\in \{0,1,\dots, n-1\}$ on Besov-Lipschitz $B^{s}_{p,q}(\mathbb{R}^n)$ and Triebel-Lizorkin $F^{s}_{p,q}(\mathbb{R}^n)$ of order $s$ and $0<p\leq\infty$, $0<q\leq\infty$. The results that are obtained are all up to the end-point and sharp and are also applied to the regularity of Klein-Gordon-type oscillatory integrals in the aforementioned function spaces.

Related articles: Most relevant | Search more
arXiv:1907.02680 [math.AP] (Published 2019-07-05)
Characterizations of Hardy spaces for Fourier integral operators
arXiv:0710.3834 [math.AP] (Published 2007-10-20)
Trace ideals for Fourier integral operators with non-smooth symbols II
arXiv:1908.01448 [math.AP] (Published 2019-08-05)
Characterizations of the Hardy space $\mathcal{H}_{FIO}^{1}(\mathbb{R}^{n})$ for Fourier Integral Operators