{ "id": "2302.00312", "version": "v1", "published": "2023-02-01T08:41:09.000Z", "updated": "2023-02-01T08:41:09.000Z", "title": "Boundedness of Fourier integral operators on classical function spaces", "authors": [ "Anders Israelsson", "Tobias Mattsson", "Wolfgang Staubach" ], "categories": [ "math.AP" ], "abstract": "We investigate the global boundedness of Fourier integral operators with amplitudes in the general H\\\"ormander classes $S^{m}_{\\rho, \\delta}(\\mathbb{R}^n)$, $\\rho, \\delta\\in [0,1]$ and non-degenerate phase functions of arbitrary rank $\\kappa\\in \\{0,1,\\dots, n-1\\}$ on Besov-Lipschitz $B^{s}_{p,q}(\\mathbb{R}^n)$ and Triebel-Lizorkin $F^{s}_{p,q}(\\mathbb{R}^n)$ of order $s$ and $0