arXiv:2301.06589 [math.FA]AbstractReferencesReviewsResources
Plastic pairs of metric spaces
Vladimir Kadets, Olesia Zavarzina
Published 2023-01-16Version 1
We address pairs $(X, Y)$ of metric spaces with the following property: for every mapping $f: X \to Y$ the existence of points $x, y \in X$ with $d(f(x),f(y)) > d(x,y)$ implies the existence of $\widetilde{x}, \widetilde{y}\in X$ for which $d(f(\widetilde{x}),f(\widetilde{y})) < d(\widetilde{x},\widetilde{y})$. We give sufficient conditions for this property and for its uniform version in terms of finite $\varepsilon$-nets and finite $\varepsilon$-separated subsets.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1408.5892 [math.FA] (Published 2014-08-25)
Capacities and Hausdorff measures on metric spaces
arXiv:1803.07545 [math.FA] (Published 2018-03-20)
A compactness result for BV functions in metric spaces
arXiv:2505.04118 [math.FA] (Published 2025-05-07)
Coarse Geometry of Free Products of Metric Spaces