{ "id": "2301.06589", "version": "v1", "published": "2023-01-16T20:11:02.000Z", "updated": "2023-01-16T20:11:02.000Z", "title": "Plastic pairs of metric spaces", "authors": [ "Vladimir Kadets", "Olesia Zavarzina" ], "categories": [ "math.FA" ], "abstract": "We address pairs $(X, Y)$ of metric spaces with the following property: for every mapping $f: X \\to Y$ the existence of points $x, y \\in X$ with $d(f(x),f(y)) > d(x,y)$ implies the existence of $\\widetilde{x}, \\widetilde{y}\\in X$ for which $d(f(\\widetilde{x}),f(\\widetilde{y})) < d(\\widetilde{x},\\widetilde{y})$. We give sufficient conditions for this property and for its uniform version in terms of finite $\\varepsilon$-nets and finite $\\varepsilon$-separated subsets.", "revisions": [ { "version": "v1", "updated": "2023-01-16T20:11:02.000Z" } ], "analyses": { "keywords": [ "metric spaces", "plastic pairs", "address pairs", "sufficient conditions", "uniform version" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }