arXiv Analytics

Sign in

arXiv:2211.08571 [math.NT]AbstractReferencesReviewsResources

Mean values of the logarithmic derivative of the Riemann zeta-function near the critical line

Fan Ge

Published 2022-11-15Version 1

Assume the Riemann Hypothesis and a hypothesis on small gaps between zeta zeros, we prove a conjecture of Bailey, Bettin, Blower, Conrey, Prokhorov, Rubinstein and Snaith, which states that for any positive integer $K$ and real number $a>0$, \begin{align*} \lim_{a \to 0^+}\lim_{T \to \infty} \frac{(2a)^{2K-1}}{T (\log T)^{2K}} \int_{T}^{2T} \left|\frac{\zeta'}{\zeta}\left(\frac{1}{2}+\frac{a}{\log T}+it\right)\right|^{2K} dt = \binom{2K-2}{K-1}. \end{align*} When $K=1$, this was essentially a result of Goldston, Gonek and Montgomery.

Related articles: Most relevant | Search more
arXiv:0907.1910 [math.NT] (Published 2009-07-10)
On the value-distribution of the Riemann zeta-function on the critical line
arXiv:math/0312008 [math.NT] (Published 2003-11-29)
On sums of squares of the Riemann zeta-function on the critical line
arXiv:1412.6340 [math.NT] (Published 2014-12-19)
On the large values of the Riemann zeta-function on the critical line - II