{ "id": "2211.08571", "version": "v1", "published": "2022-11-15T23:29:20.000Z", "updated": "2022-11-15T23:29:20.000Z", "title": "Mean values of the logarithmic derivative of the Riemann zeta-function near the critical line", "authors": [ "Fan Ge" ], "categories": [ "math.NT" ], "abstract": "Assume the Riemann Hypothesis and a hypothesis on small gaps between zeta zeros, we prove a conjecture of Bailey, Bettin, Blower, Conrey, Prokhorov, Rubinstein and Snaith, which states that for any positive integer $K$ and real number $a>0$, \\begin{align*} \\lim_{a \\to 0^+}\\lim_{T \\to \\infty} \\frac{(2a)^{2K-1}}{T (\\log T)^{2K}} \\int_{T}^{2T} \\left|\\frac{\\zeta'}{\\zeta}\\left(\\frac{1}{2}+\\frac{a}{\\log T}+it\\right)\\right|^{2K} dt = \\binom{2K-2}{K-1}. \\end{align*} When $K=1$, this was essentially a result of Goldston, Gonek and Montgomery.", "revisions": [ { "version": "v1", "updated": "2022-11-15T23:29:20.000Z" } ], "analyses": { "keywords": [ "riemann zeta-function", "mean values", "critical line", "logarithmic derivative", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }