arXiv:2211.05747 [math.NT]AbstractReferencesReviewsResources
Lower Bounds for Rankin-Selberg $L$-functions on the Edge of the Critical Strip
Published 2022-11-10Version 1
Let $F$ be a number field, and let $\pi_1$ and $\pi_2$ be distinct unitary cuspidal automorphic representations of $\operatorname{GL}_{n_1}(\mathbb{A}_F)$ and $\operatorname{GL}_{n_2}(\mathbb{A}_F)$ respectively. In this paper, we derive new lower bounds for the Rankin-Selberg $L$-function $L(s, \pi_1 \times \widetilde{\pi}_2)$ along the edge $\Re s = 1$ of the critical strip in the $t$-aspect. The corresponding zero-free region for $L(s, \pi_1 \times \widetilde{\pi}_2)$ is also determined.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1804.06402 [math.NT] (Published 2018-04-17)
Zeros of Rankin-Selberg $L$-functions at the edge of the critical strip
arXiv:0803.1508 [math.NT] (Published 2008-03-10)
A Hidden Symmetry Related to the Riemann Hypothesis with the Primes into the Critical Strip
arXiv:1008.4970 [math.NT] (Published 2010-08-29)
Bounding $ΞΆ(s)$ in the critical strip