{ "id": "2211.05747", "version": "v1", "published": "2022-11-10T18:26:13.000Z", "updated": "2022-11-10T18:26:13.000Z", "title": "Lower Bounds for Rankin-Selberg $L$-functions on the Edge of the Critical Strip", "authors": [ "Qiao Zhang" ], "categories": [ "math.NT" ], "abstract": "Let $F$ be a number field, and let $\\pi_1$ and $\\pi_2$ be distinct unitary cuspidal automorphic representations of $\\operatorname{GL}_{n_1}(\\mathbb{A}_F)$ and $\\operatorname{GL}_{n_2}(\\mathbb{A}_F)$ respectively. In this paper, we derive new lower bounds for the Rankin-Selberg $L$-function $L(s, \\pi_1 \\times \\widetilde{\\pi}_2)$ along the edge $\\Re s = 1$ of the critical strip in the $t$-aspect. The corresponding zero-free region for $L(s, \\pi_1 \\times \\widetilde{\\pi}_2)$ is also determined.", "revisions": [ { "version": "v1", "updated": "2022-11-10T18:26:13.000Z" } ], "analyses": { "subjects": [ "11M26", "11F66" ], "keywords": [ "lower bounds", "critical strip", "rankin-selberg", "distinct unitary cuspidal automorphic representations", "corresponding zero-free region" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }