arXiv Analytics

Sign in

arXiv:2210.11225 [math.PR]AbstractReferencesReviewsResources

Dirichlet Heat kernel estimates for a large class of anisotropic Markov processes

Kyung-Youn Kim, Lidan Wang

Published 2022-10-20Version 1

Let $Z=(Z^{1}, \ldots, Z^{d})$ be the d-dimensional L\'evy {process} where {$Z^i$'s} are independent 1-dimensional L\'evy {processes} with identical jumping kernel $ \nu^1(r) =r^{-1}\phi(r)^{-1}$. Here $\phi$ is {an} increasing function with weakly scaling condition of order $\underline \alpha, \overline \alpha\in (0, 2)$. We consider a symmetric function $J(x,y)$ comparable to \begin{align*} \begin{cases} \nu^1(|x^i - y^i|)\qquad&\text{ if $x^i \ne y^i$ for some $i$ and $x^j = y^j$ for all $j \ne i$}\\ 0\qquad&\text{ if $x^i \ne y^i$ for more than one index $i$}. \end{cases} \end{align*} Corresponding to the jumping kernel $J$, there exists an anisotropic Markov process $X$, see \cite{KW22}. In this article, we establish sharp two-sided Dirichlet heat kernel estimates for $X$ in $C^{1,1}$ open set, under certain regularity conditions. As an application of the main results, we derive the Green function estimates.

Related articles: Most relevant | Search more
arXiv:1901.08745 [math.PR] (Published 2019-01-25)
Estimates of Dirichlet heat kernels for unimodal Lévy processes with low intensity of small jumps
arXiv:1503.03153 [math.PR] (Published 2015-03-11)
Minimal thinness with respect to subordinate killed Brownian motions
arXiv:1405.2141 [math.PR] (Published 2014-05-09, updated 2014-09-18)
Tangential limits for harmonic functions with respect to $φ(Δ)$ : stable and beyond