{ "id": "2210.11225", "version": "v1", "published": "2022-10-20T13:00:30.000Z", "updated": "2022-10-20T13:00:30.000Z", "title": "Dirichlet Heat kernel estimates for a large class of anisotropic Markov processes", "authors": [ "Kyung-Youn Kim", "Lidan Wang" ], "comment": "34 pages", "categories": [ "math.PR" ], "abstract": "Let $Z=(Z^{1}, \\ldots, Z^{d})$ be the d-dimensional L\\'evy {process} where {$Z^i$'s} are independent 1-dimensional L\\'evy {processes} with identical jumping kernel $ \\nu^1(r) =r^{-1}\\phi(r)^{-1}$. Here $\\phi$ is {an} increasing function with weakly scaling condition of order $\\underline \\alpha, \\overline \\alpha\\in (0, 2)$. We consider a symmetric function $J(x,y)$ comparable to \\begin{align*} \\begin{cases} \\nu^1(|x^i - y^i|)\\qquad&\\text{ if $x^i \\ne y^i$ for some $i$ and $x^j = y^j$ for all $j \\ne i$}\\\\ 0\\qquad&\\text{ if $x^i \\ne y^i$ for more than one index $i$}. \\end{cases} \\end{align*} Corresponding to the jumping kernel $J$, there exists an anisotropic Markov process $X$, see \\cite{KW22}. In this article, we establish sharp two-sided Dirichlet heat kernel estimates for $X$ in $C^{1,1}$ open set, under certain regularity conditions. As an application of the main results, we derive the Green function estimates.", "revisions": [ { "version": "v1", "updated": "2022-10-20T13:00:30.000Z" } ], "analyses": { "subjects": [ "31B25", "60J50" ], "keywords": [ "anisotropic markov process", "large class", "two-sided dirichlet heat kernel estimates", "sharp two-sided dirichlet heat kernel" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }