arXiv Analytics

Sign in

arXiv:2210.02668 [math.NT]AbstractReferencesReviewsResources

Congruences on the class numbers of $\mathbb{Q}(\sqrt{\pm 2p})$ for $p\equiv3$ $(\text{mod }4)$ a prime

Jigu Kim, Yoshinori Mizuno

Published 2022-10-06Version 1

For a prime $p\equiv 3$ $(\text{mod }4)$, let $h(-8p)$ and $h(8p)$ be the class numbers of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{2p})$, respectively. Let $\Psi(\xi)$ be the Hirzebruch sum of a quadratic irrational $\xi$. We show that $h(-8p)\equiv h(8p)\Big(\Psi(2\sqrt{2p})/3-\Psi\big((1+\sqrt{2p})/2\big)/3\Big)$ $(\text{mod }16)$. Also, we show that $h(-8p)\equiv 2h(8p)\Psi(2\sqrt{2p})/3$ $(\text{mod }8)$ if $p\equiv 3$ $(\text{mod }8)$, and $h(-8p)\equiv \big(2h(8p)\Psi(2\sqrt{2p})/3\big)+4$ $(\text{mod }8)$ if $p\equiv 7$ $(\text{mod }8)$.

Comments: 16 pages
Categories: math.NT
Subjects: 11R29, 11A55, 11F20
Related articles: Most relevant | Search more
arXiv:1407.3261 [math.NT] (Published 2014-07-11, updated 2014-08-06)
Proof of a conjecture of Guy on class numbers
arXiv:1410.2921 [math.NT] (Published 2014-10-10)
Class numbers in cyclotomic Z_p-extensions
arXiv:0709.1665 [math.NT] (Published 2007-09-11, updated 2011-06-02)
On some new congruences for binomial coefficients