{ "id": "2210.02668", "version": "v1", "published": "2022-10-06T04:08:58.000Z", "updated": "2022-10-06T04:08:58.000Z", "title": "Congruences on the class numbers of $\\mathbb{Q}(\\sqrt{\\pm 2p})$ for $p\\equiv3$ $(\\text{mod }4)$ a prime", "authors": [ "Jigu Kim", "Yoshinori Mizuno" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "For a prime $p\\equiv 3$ $(\\text{mod }4)$, let $h(-8p)$ and $h(8p)$ be the class numbers of $\\mathbb{Q}(\\sqrt{-2p})$ and $\\mathbb{Q}(\\sqrt{2p})$, respectively. Let $\\Psi(\\xi)$ be the Hirzebruch sum of a quadratic irrational $\\xi$. We show that $h(-8p)\\equiv h(8p)\\Big(\\Psi(2\\sqrt{2p})/3-\\Psi\\big((1+\\sqrt{2p})/2\\big)/3\\Big)$ $(\\text{mod }16)$. Also, we show that $h(-8p)\\equiv 2h(8p)\\Psi(2\\sqrt{2p})/3$ $(\\text{mod }8)$ if $p\\equiv 3$ $(\\text{mod }8)$, and $h(-8p)\\equiv \\big(2h(8p)\\Psi(2\\sqrt{2p})/3\\big)+4$ $(\\text{mod }8)$ if $p\\equiv 7$ $(\\text{mod }8)$.", "revisions": [ { "version": "v1", "updated": "2022-10-06T04:08:58.000Z" } ], "analyses": { "subjects": [ "11R29", "11A55", "11F20" ], "keywords": [ "class numbers", "congruences", "hirzebruch sum" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }