arXiv:2209.07149 [math.AP]AbstractReferencesReviewsResources
Explicit structure of the vanishing viscosity limits for the zero-pressure gas dynamics system initiated by the linear combination of a characteristic function and a $δ$-measure
Published 2022-09-15Version 1
In this article, we consider the one-dimensional zero-pressure gas dynamics system \[ u_t + \left( {u^2}/{2} \right)_x = 0,\ \rho_t + (\rho u)_x = 0 \] in the upper-half plane with a linear combination of a characteristic function and a $\delta$-measure \[ u|_{t=0} = u_a\ \chi_{ {}_{ \left( -\infty , a \right) } } + u_b\ \delta_{x=b},\ \rho|_{t=0} = \rho_c\ \chi_{ {}_{ \left( -\infty , c \right) } } + \rho_d\ \delta_{x=d} \] as initial data, where $a$, $b$, $c$, $d$ are distinct points on the real line ordered as $a < c < b < d$, and provide a detailed analysis of the vanishing viscosity limits for the above system utilizing the corresponding modified adhesion model \[ u^\epsilon_t + \left({(u^\epsilon)^2}/{2} \right)_x =\frac{\epsilon}{2} u^\epsilon_{xx},\ \rho^\epsilon_t + (\rho^\epsilon u^\epsilon)_x = \frac{\epsilon}{2} \rho^\epsilon_{xx}. \] For this purpose, we use suitable Hopf-Cole transformations and various properties of erfc $: z \longmapsto \int_{z}^{\infty} e^{-s^2}\ ds$.