{ "id": "2209.07149", "version": "v1", "published": "2022-09-15T09:02:00.000Z", "updated": "2022-09-15T09:02:00.000Z", "title": "Explicit structure of the vanishing viscosity limits for the zero-pressure gas dynamics system initiated by the linear combination of a characteristic function and a $δ$-measure", "authors": [ "Abhishek Das" ], "comment": "27 pages", "categories": [ "math.AP" ], "abstract": "In this article, we consider the one-dimensional zero-pressure gas dynamics system \\[ u_t + \\left( {u^2}/{2} \\right)_x = 0,\\ \\rho_t + (\\rho u)_x = 0 \\] in the upper-half plane with a linear combination of a characteristic function and a $\\delta$-measure \\[ u|_{t=0} = u_a\\ \\chi_{ {}_{ \\left( -\\infty , a \\right) } } + u_b\\ \\delta_{x=b},\\ \\rho|_{t=0} = \\rho_c\\ \\chi_{ {}_{ \\left( -\\infty , c \\right) } } + \\rho_d\\ \\delta_{x=d} \\] as initial data, where $a$, $b$, $c$, $d$ are distinct points on the real line ordered as $a < c < b < d$, and provide a detailed analysis of the vanishing viscosity limits for the above system utilizing the corresponding modified adhesion model \\[ u^\\epsilon_t + \\left({(u^\\epsilon)^2}/{2} \\right)_x =\\frac{\\epsilon}{2} u^\\epsilon_{xx},\\ \\rho^\\epsilon_t + (\\rho^\\epsilon u^\\epsilon)_x = \\frac{\\epsilon}{2} \\rho^\\epsilon_{xx}. \\] For this purpose, we use suitable Hopf-Cole transformations and various properties of erfc $: z \\longmapsto \\int_{z}^{\\infty} e^{-s^2}\\ ds$.", "revisions": [ { "version": "v1", "updated": "2022-09-15T09:02:00.000Z" } ], "analyses": { "subjects": [ "35F25", "35B25", "35L67", "35R05" ], "keywords": [ "vanishing viscosity limits", "linear combination", "characteristic function", "explicit structure", "one-dimensional zero-pressure gas dynamics system" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }