arXiv:2208.14058 [math.RT]AbstractReferencesReviewsResources
Affine Deligne--Lusztig varieties with finite Coxeter parts
Xuhua He, Sian Nie, Qingchao Yu
Published 2022-08-30Version 1
In this paper, we study affine Deligne--Lusztig varieties $X_w(b)$ when the finite part of the element $w$ in the Iwahori--Weyl group is a partial $\sigma$-Coxeter element. We show that such $w$ is a cordial element and $X_w(b) \neq \emptyset$ if and only if $b$ satisfies a certain Hodge--Newton indecomposability condition. The main result of this paper is that for such $w$ and $b$, $X_w(b)$ has a simple geometric structure: the $\sigma$-centralizer of $b$ acts transitively on the set of irreducible components of $X_w(b)$; and each irreducible component is an iterated fibration over a classical Deligne--Lusztig variety of Coxeter type, and the iterated fibers are either $\mathbb A^1$ or $\mathbb G_m$.