arXiv Analytics

Sign in

arXiv:2208.14058 [math.RT]AbstractReferencesReviewsResources

Affine Deligne--Lusztig varieties with finite Coxeter parts

Xuhua He, Sian Nie, Qingchao Yu

Published 2022-08-30Version 1

In this paper, we study affine Deligne--Lusztig varieties $X_w(b)$ when the finite part of the element $w$ in the Iwahori--Weyl group is a partial $\sigma$-Coxeter element. We show that such $w$ is a cordial element and $X_w(b) \neq \emptyset$ if and only if $b$ satisfies a certain Hodge--Newton indecomposability condition. The main result of this paper is that for such $w$ and $b$, $X_w(b)$ has a simple geometric structure: the $\sigma$-centralizer of $b$ acts transitively on the set of irreducible components of $X_w(b)$; and each irreducible component is an iterated fibration over a classical Deligne--Lusztig variety of Coxeter type, and the iterated fibers are either $\mathbb A^1$ or $\mathbb G_m$.

Related articles: Most relevant | Search more
arXiv:0804.2085 [math.RT] (Published 2008-04-13)
On regularity in codimension one of irreducible components of module varieties
arXiv:0903.3820 [math.RT] (Published 2009-03-23, updated 2012-09-04)
Irreducible components of the Jordan varieties
arXiv:2307.12521 [math.RT] (Published 2023-07-24)
Steinberg's cross-section of Newton strata