{ "id": "2208.14058", "version": "v1", "published": "2022-08-30T08:19:19.000Z", "updated": "2022-08-30T08:19:19.000Z", "title": "Affine Deligne--Lusztig varieties with finite Coxeter parts", "authors": [ "Xuhua He", "Sian Nie", "Qingchao Yu" ], "comment": "29 pages", "categories": [ "math.RT", "math.AG", "math.NT" ], "abstract": "In this paper, we study affine Deligne--Lusztig varieties $X_w(b)$ when the finite part of the element $w$ in the Iwahori--Weyl group is a partial $\\sigma$-Coxeter element. We show that such $w$ is a cordial element and $X_w(b) \\neq \\emptyset$ if and only if $b$ satisfies a certain Hodge--Newton indecomposability condition. The main result of this paper is that for such $w$ and $b$, $X_w(b)$ has a simple geometric structure: the $\\sigma$-centralizer of $b$ acts transitively on the set of irreducible components of $X_w(b)$; and each irreducible component is an iterated fibration over a classical Deligne--Lusztig variety of Coxeter type, and the iterated fibers are either $\\mathbb A^1$ or $\\mathbb G_m$.", "revisions": [ { "version": "v1", "updated": "2022-08-30T08:19:19.000Z" } ], "analyses": { "subjects": [ "11G25", "20G25" ], "keywords": [ "finite coxeter parts", "study affine deligne-lusztig varieties", "hodge-newton indecomposability condition", "simple geometric structure", "irreducible component" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }