arXiv:2208.11763 [math.RT]AbstractReferencesReviewsResources
On Poisson transform for spinors
Salem Bensaïd, Abdelhamid Boussejra, Khalid Koufany
Published 2022-08-24Version 1
Let $(\tau,V_\tau)$ be a spinor representation of $\mathrm{Spin}(n)$ and let $(\sigma,V_\sigma)$ be a spinor representation of $\mathrm{Spin}(n-1)$ that occurs in the restriction $\tau_{\mid \mathrm{Spin}(n-1)}$. We consider the real hyperbolic space $H^n(\mathbb R)$ as the rank one homogeneous space $\mathrm{Spin}_0(1,n)/\mathrm{Spin}(n)$ and the spinor bundle $\Sigma H^n(\mathbb R)$ over $H^n(\mathbb R)$ as the homogeneous bundle $\mathrm{Spin}_0(1,n)\times_{\mathrm{Spin}(n)} V_\tau$. Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on $\Sigma H^n(\mathbb R)$ which can be written as the Poisson transform of $L^p$-sections of the bundle $\mathrm{Spin}(n)\times_{\mathrm{Spin}(n-1)} V_\sigma$ over the boundary $S^{n-1}\simeq \mathrm{Spin}(n)/\mathrm{Spin}(n-1)$ of $H^n(\mathbb R)$.