{ "id": "2208.11763", "version": "v1", "published": "2022-08-24T20:34:54.000Z", "updated": "2022-08-24T20:34:54.000Z", "title": "On Poisson transform for spinors", "authors": [ "Salem Bensaïd", "Abdelhamid Boussejra", "Khalid Koufany" ], "categories": [ "math.RT", "math.FA" ], "abstract": "Let $(\\tau,V_\\tau)$ be a spinor representation of $\\mathrm{Spin}(n)$ and let $(\\sigma,V_\\sigma)$ be a spinor representation of $\\mathrm{Spin}(n-1)$ that occurs in the restriction $\\tau_{\\mid \\mathrm{Spin}(n-1)}$. We consider the real hyperbolic space $H^n(\\mathbb R)$ as the rank one homogeneous space $\\mathrm{Spin}_0(1,n)/\\mathrm{Spin}(n)$ and the spinor bundle $\\Sigma H^n(\\mathbb R)$ over $H^n(\\mathbb R)$ as the homogeneous bundle $\\mathrm{Spin}_0(1,n)\\times_{\\mathrm{Spin}(n)} V_\\tau$. Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on $\\Sigma H^n(\\mathbb R)$ which can be written as the Poisson transform of $L^p$-sections of the bundle $\\mathrm{Spin}(n)\\times_{\\mathrm{Spin}(n-1)} V_\\sigma$ over the boundary $S^{n-1}\\simeq \\mathrm{Spin}(n)/\\mathrm{Spin}(n-1)$ of $H^n(\\mathbb R)$.", "revisions": [ { "version": "v1", "updated": "2022-08-24T20:34:54.000Z" } ], "analyses": { "subjects": [ "58A10", "43A85", "53C35", "22E30" ], "keywords": [ "poisson transform", "spinor representation", "real hyperbolic space", "spinor bundle", "invariant differential operators acting" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }