arXiv:2207.09015 [math.FA]AbstractReferencesReviewsResources
Composition-differentiation operators on the Dirichlet space
Robert F. Allen, Katherine Heller, Matthew A. Pons
Published 2022-07-19Version 1
We investigate composition-differentiation operators acting on the Dirichlet space of the unit disk. Specifically, we determine characterizations for bounded, compact, and Hilbert-Schmidt composition-differentiation operators. In addition, for particular classes of inducing maps, we derive an adjoint formula, compute the norm, and identify the spectrum.
Journal: J. Math. Anal. Appl. 512 (2022), no. 2, Paper No. 126186, 18 pp
Categories: math.FA
Subjects: 47B33
Keywords: dirichlet space, hilbert-schmidt composition-differentiation operators, adjoint formula, determine characterizations, unit disk
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1503.06165 [math.FA] (Published 2015-03-20)
Essentially Normal Composition Operators on $H^2$
arXiv:math/0504179 [math.FA] (Published 2005-04-08)
Composition Operators on the Dirichlet Space and Related Problems
arXiv:2308.15045 [math.FA] (Published 2023-08-29)
Hilbert-Schmidt composition-differentiation operators on the unit ball