{ "id": "2207.09015", "version": "v1", "published": "2022-07-19T01:41:32.000Z", "updated": "2022-07-19T01:41:32.000Z", "title": "Composition-differentiation operators on the Dirichlet space", "authors": [ "Robert F. Allen", "Katherine Heller", "Matthew A. Pons" ], "journal": "J. Math. Anal. Appl. 512 (2022), no. 2, Paper No. 126186, 18 pp", "doi": "10.1016/j.jmaa.2022.126186", "categories": [ "math.FA" ], "abstract": "We investigate composition-differentiation operators acting on the Dirichlet space of the unit disk. Specifically, we determine characterizations for bounded, compact, and Hilbert-Schmidt composition-differentiation operators. In addition, for particular classes of inducing maps, we derive an adjoint formula, compute the norm, and identify the spectrum.", "revisions": [ { "version": "v1", "updated": "2022-07-19T01:41:32.000Z" } ], "analyses": { "subjects": [ "47B33" ], "keywords": [ "dirichlet space", "hilbert-schmidt composition-differentiation operators", "adjoint formula", "determine characterizations", "unit disk" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }