arXiv Analytics

Sign in

arXiv:2206.04021 [math.CO]AbstractReferencesReviewsResources

Fixed points of powers of permutations

Melvyn B. Nathanson

Published 2022-06-08Version 1

Let $\sigma$ be a permutation of a finite or infinite set $X$, and let $F_X\left( \sigma^k\right)$ be the number of fixed points of the $k$th power of $\sigma$. This paper describes how the sequence $\left(F_X\left( \sigma^k\right) \right)_{k=1}^{\infty}$ determines the permutation $\sigma$.

Comments: 9 pages
Categories: math.CO, math.GR, math.NT
Subjects: 20B05, 20B07, 20B10, 20F69
Related articles: Most relevant | Search more
arXiv:0708.2643 [math.CO] (Published 2007-08-20)
On fixed points of permutations
arXiv:2111.13745 [math.CO] (Published 2021-11-26, updated 2023-05-22)
Combinatorial Relationship Between Finite Fields and Fixed Points of Functions Going Up and Down
arXiv:1705.04801 [math.CO] (Published 2017-05-13)
Asymptotic distribution of fixed points of pattern-avoiding involutions