{ "id": "2206.04021", "version": "v1", "published": "2022-06-08T17:27:18.000Z", "updated": "2022-06-08T17:27:18.000Z", "title": "Fixed points of powers of permutations", "authors": [ "Melvyn B. Nathanson" ], "comment": "9 pages", "categories": [ "math.CO", "math.GR", "math.NT" ], "abstract": "Let $\\sigma$ be a permutation of a finite or infinite set $X$, and let $F_X\\left( \\sigma^k\\right)$ be the number of fixed points of the $k$th power of $\\sigma$. This paper describes how the sequence $\\left(F_X\\left( \\sigma^k\\right) \\right)_{k=1}^{\\infty}$ determines the permutation $\\sigma$.", "revisions": [ { "version": "v1", "updated": "2022-06-08T17:27:18.000Z" } ], "analyses": { "subjects": [ "20B05", "20B07", "20B10", "20F69" ], "keywords": [ "fixed points", "permutation", "infinite set" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }