arXiv Analytics

Sign in

arXiv:2205.15632 [math.RT]AbstractReferencesReviewsResources

Projective representations of real reductive Lie groups and the gradient map

Leonardo Biliotti

Published 2022-05-31Version 1

Let $G$ be a connected semisimple noncompact real Lie group and let $\rho: G \longrightarrow \mathrm{SL}(V)$ be a representation on a finite dimensional vector space $V$ over $\mathbb R$, with $\rho(G)$ closed in $\mathrm{SL}(V)$. Identifying $G$ with $\rho(G)$, we assume there exists a $K$-invariant scalar product $\mathtt g$ such that $G=K\exp(\mathfrak p)$, where $K=\mathrm{SO}(V,\mathtt g)\cap G$, $\mathfrak p=\mathrm{Sym}_o (V,\mathtt g)\cap \mathfrak g$ and $\mathfrak g$ denotes the Lie algebra of $G$. Here $\mathrm{Sym}_o (V,\mathtt g)$ denotes the set of symmetric endomorphisms with trace zero. Using the $G$-gradient map techniques we analyze the natural projective representation of $G$ on $\mathbb P(V)$.

Comments: 29 pages. arXiv admin note: text overlap with arXiv:2012.14858
Categories: math.RT
Subjects: 22E45, 53D20, 14L24
Related articles: Most relevant | Search more
arXiv:1905.01915 [math.RT] (Published 2019-05-06)
Convexity properties of gradient maps associated to real reductive representations
arXiv:1111.3973 [math.RT] (Published 2011-11-16)
A comparison of Paley-Wiener theorems for real reductive Lie groups
arXiv:1612.03623 [math.RT] (Published 2016-12-12)
Homogeneous distributions on finite dimensional vector spaces