{ "id": "2205.15632", "version": "v1", "published": "2022-05-31T09:21:26.000Z", "updated": "2022-05-31T09:21:26.000Z", "title": "Projective representations of real reductive Lie groups and the gradient map", "authors": [ "Leonardo Biliotti" ], "comment": "29 pages. arXiv admin note: text overlap with arXiv:2012.14858", "categories": [ "math.RT" ], "abstract": "Let $G$ be a connected semisimple noncompact real Lie group and let $\\rho: G \\longrightarrow \\mathrm{SL}(V)$ be a representation on a finite dimensional vector space $V$ over $\\mathbb R$, with $\\rho(G)$ closed in $\\mathrm{SL}(V)$. Identifying $G$ with $\\rho(G)$, we assume there exists a $K$-invariant scalar product $\\mathtt g$ such that $G=K\\exp(\\mathfrak p)$, where $K=\\mathrm{SO}(V,\\mathtt g)\\cap G$, $\\mathfrak p=\\mathrm{Sym}_o (V,\\mathtt g)\\cap \\mathfrak g$ and $\\mathfrak g$ denotes the Lie algebra of $G$. Here $\\mathrm{Sym}_o (V,\\mathtt g)$ denotes the set of symmetric endomorphisms with trace zero. Using the $G$-gradient map techniques we analyze the natural projective representation of $G$ on $\\mathbb P(V)$.", "revisions": [ { "version": "v1", "updated": "2022-05-31T09:21:26.000Z" } ], "analyses": { "subjects": [ "22E45", "53D20", "14L24" ], "keywords": [ "real reductive lie groups", "gradient map", "projective representation", "semisimple noncompact real lie group", "finite dimensional vector space" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }