arXiv Analytics

Sign in

arXiv:2205.13890 [math.CA]AbstractReferencesReviewsResources

On exceptional sets of radial projections

Tuomas Orponen, Pablo Shmerkin

Published 2022-05-27Version 1

We prove two new exceptional set estimates for radial projections in the plane. If $K \subset \mathbb{R}^{2}$ is a Borel set with $\dim_{\mathrm{H}} K > 1$, then $$\dim_{\mathrm{H}} \{x \in \mathbb{R}^{2} \, \setminus \, K : \dim_{\mathrm{H}} \pi_{x}(K) \leq \sigma\} \leq \max\{1 + \sigma - \dim_{\mathrm{H}} K,0\}, \qquad \sigma \in [0,1).$$ If $K \subset \mathbb{R}^{2}$ is a Borel set with $\dim_{\mathrm{H}} K \leq 1$, then $$\dim_{\mathrm{H}} \{x \in \mathbb{R}^{2} \, \setminus \, K : \dim_{\mathrm{H}} \pi_{x}(K) < \dim_{\mathrm{H}} K\} \leq 1.$$ The finite field counterparts of both results above were recently proven by Lund, Thang, and Huong Thu. Our results resolve the planar cases of conjectures of Lund-Thang-Huong Thu, and Liu.

Related articles: Most relevant | Search more
arXiv:2406.09707 [math.CA] (Published 2024-06-14)
Radial Projections in $\mathbb{R}^n$ Revisited
arXiv:2208.03597 [math.CA] (Published 2022-08-06)
Exceptional set estimates for orthogonal and radial projections in $\mathbb{R}^n$
arXiv:2402.11847 [math.CA] (Published 2024-02-19)
A Study Guide to "Kaufman and Falconer estimates for radial projections"