{ "id": "2205.13890", "version": "v1", "published": "2022-05-27T10:42:15.000Z", "updated": "2022-05-27T10:42:15.000Z", "title": "On exceptional sets of radial projections", "authors": [ "Tuomas Orponen", "Pablo Shmerkin" ], "comment": "25 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We prove two new exceptional set estimates for radial projections in the plane. If $K \\subset \\mathbb{R}^{2}$ is a Borel set with $\\dim_{\\mathrm{H}} K > 1$, then $$\\dim_{\\mathrm{H}} \\{x \\in \\mathbb{R}^{2} \\, \\setminus \\, K : \\dim_{\\mathrm{H}} \\pi_{x}(K) \\leq \\sigma\\} \\leq \\max\\{1 + \\sigma - \\dim_{\\mathrm{H}} K,0\\}, \\qquad \\sigma \\in [0,1).$$ If $K \\subset \\mathbb{R}^{2}$ is a Borel set with $\\dim_{\\mathrm{H}} K \\leq 1$, then $$\\dim_{\\mathrm{H}} \\{x \\in \\mathbb{R}^{2} \\, \\setminus \\, K : \\dim_{\\mathrm{H}} \\pi_{x}(K) < \\dim_{\\mathrm{H}} K\\} \\leq 1.$$ The finite field counterparts of both results above were recently proven by Lund, Thang, and Huong Thu. Our results resolve the planar cases of conjectures of Lund-Thang-Huong Thu, and Liu.", "revisions": [ { "version": "v1", "updated": "2022-05-27T10:42:15.000Z" } ], "analyses": { "subjects": [ "27A80", "28A78" ], "keywords": [ "radial projections", "borel set", "exceptional set estimates", "finite field counterparts", "lund-thang-huong thu" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }