arXiv:2205.08825 [math.DS]AbstractReferencesReviewsResources
Certain invariant algebraic sets in $S^p \times S^q$
Published 2022-05-18Version 1
Let $S_{p,q}$ be the hypersurface in $\mathbb{R}^{p+q+1}$ defined by the following: $$ S_{p,q} := \left\lbrace (x_1,\ldots,x_{p+1},y_1,\ldots,y_q) \in \mathbb{R}^{p+q+1} \big| \left( \sum_{i=1}^{p+1} x_i^2 - a^2 \right)^2 + \sum_{j=1}^q y_j^2 = 1 \right\rbrace,$$ where $a > 1$. We show that $S_{p,q}$ is homeomorphic to the product $S^p \times S^q$. We consider the polynomial vector field $\mathcal{X} = (P_1,...,P_{p+1},Q_1,...,Q_q)$ in $\mathbb{R}^{p+q+1}$ which keeps $S_{p,q}$ invariant. Then we study the number of certain invariant algebraic subvarieties of $S_{p,q}$ for the vector field $\mathcal{X}$ if either $p>1$ or $q>1$.
Related articles: Most relevant | Search more
arXiv:math/9909091 [math.DS] (Published 1999-09-16)
Isochronicity and Commutation of Polynomial Vector Fields
arXiv:2006.04783 [math.DS] (Published 2020-06-08)
Distinguishing endpoint sets from Erdős space
arXiv:2202.01982 [math.DS] (Published 2022-02-02)
A complex limit cycle not intersecting the real plane