arXiv:2202.01982 [math.DS]AbstractReferencesReviewsResources
A complex limit cycle not intersecting the real plane
Published 2022-02-02Version 1
We give a precise example of a polynomial vector field on $\mathbb{R}^2$ whose corresponding singular holomorphic foliation of $\mathbb{C}^2$ possesses a complex limit cycle which does not intersect the real plane $\mathbb{R}^2$.
Journal: Mathematical Analysis&Convex optimization, MACO 2021, 2(2): 67-71
Keywords: complex limit cycle, real plane, polynomial vector field, corresponding singular holomorphic foliation, precise example
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/9909091 [math.DS] (Published 1999-09-16)
Isochronicity and Commutation of Polynomial Vector Fields
arXiv:2205.08825 [math.DS] (Published 2022-05-18)
Certain invariant algebraic sets in $S^p \times S^q$
arXiv:math/0009020 [math.DS] (Published 2000-09-02)
Multiplicity of Invariant Algebraic Curves and Darboux Integrability