arXiv Analytics

Sign in

arXiv:2204.08275 [math.NT]AbstractReferencesReviewsResources

Evaluations of three series of the type $\sum_{k=0}^\infty(ak+b)x^k/\binom{4k}{2k}$

Zhi-Wei Sun

Published 2022-04-11Version 1

In this paper, via the beta function we obtain the following three new identities: $$\sum_{k=0}^\infty\frac{k4^k}{\binom{4k}{2k}}=\frac{3\pi+8}{12}, \ \ \ \ \sum_{k=0}^\infty\frac{(30k-7)(-2)^k}{\binom{4k}{2k}}=-\frac{3\pi+64}{6},$$ and $$\sum_{k=0}^\infty\frac{14k-5}{4^k\binom{4k}{2k}}=\frac{16}{81}(\log2-24).$$

Comments: 8 pages
Categories: math.NT, math.CO
Subjects: 11B65, 05A19, 11A07, 33B15
Related articles: Most relevant | Search more
arXiv:2002.04191 [math.NT] (Published 2020-02-11)
On the Area Bounded by the Curve $\prod_{k = 1}^n |x\sin(kπ/n) - y\cos(kπ/n)| = 1$
arXiv:1803.09445 [math.NT] (Published 2018-03-26, updated 2019-07-31)
Evaluations of Series Related to Jacobi Elliptic Functions
arXiv:1207.5831 [math.NT] (Published 2012-07-24, updated 2013-05-07)
On Eisenstein's formula for the Fermat quotient