{ "id": "2204.08275", "version": "v1", "published": "2022-04-11T16:39:25.000Z", "updated": "2022-04-11T16:39:25.000Z", "title": "Evaluations of three series of the type $\\sum_{k=0}^\\infty(ak+b)x^k/\\binom{4k}{2k}$", "authors": [ "Zhi-Wei Sun" ], "comment": "8 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, via the beta function we obtain the following three new identities: $$\\sum_{k=0}^\\infty\\frac{k4^k}{\\binom{4k}{2k}}=\\frac{3\\pi+8}{12}, \\ \\ \\ \\ \\sum_{k=0}^\\infty\\frac{(30k-7)(-2)^k}{\\binom{4k}{2k}}=-\\frac{3\\pi+64}{6},$$ and $$\\sum_{k=0}^\\infty\\frac{14k-5}{4^k\\binom{4k}{2k}}=\\frac{16}{81}(\\log2-24).$$", "revisions": [ { "version": "v1", "updated": "2022-04-11T16:39:25.000Z" } ], "analyses": { "subjects": [ "11B65", "05A19", "11A07", "33B15" ], "keywords": [ "evaluations", "beta function" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }