arXiv Analytics

Sign in

arXiv:2204.03010 [math.CO]AbstractReferencesReviewsResources

Poset Ramsey number $R(P,Q_n)$. I. Complete multipartite posets

Christian Winter

Published 2022-04-06Version 1

A poset $(P',\le_{P'})$ contains a copy of some other poset $(P,\le_P)$ if there is an injection $f\colon P'\to P$ where for every $X,Y\in P$, $X\le_P Y$ if and only if $f(X)\le_{P'} f(Y)$. For any posets $P$ and $Q$, the poset Ramsey number $R(P,Q)$ is the smallest integer $N$ such that any blue/red coloring of a Boolean lattice of dimension $N$ contains either a copy of $P$ with all elements blue or a copy of $Q$ with all elements red. We denote by $K_{t_1,\dots,t_\ell}$ a complete $\ell$-partite poset, i.e.\ a poset consisting of $\ell$ pairwise disjoint sets $A^i$ of size $t_i$, $1\le i\le \ell$, such that for any $i,j\in\{1,\dots,\ell\}$ and any two $X\in A^{i}$ and $Y\in A^{j}$, $X<Y$ if and only if $i<j$. In this paper we show that $R(K_{t_1,\dots,t_\ell},Q_n)\le n+\frac{(2+o_n(1))\ell n}{\log n}$.

Comments: 8 pages, 3 figures
Categories: math.CO
Subjects: 06A07, 05D10
Related articles: Most relevant | Search more
arXiv:2205.02275 [math.CO] (Published 2022-05-04)
Poset Ramsey Number $R(P,Q_n)$. II. Antichains
arXiv:2303.04462 [math.CO] (Published 2023-03-08, updated 2023-07-05)
Poset Ramsey number $R(P,Q_n)$. III. Chain Compositions and Antichains
arXiv:1909.08680 [math.CO] (Published 2019-09-18)
Poset Ramsey Numbers for Boolean Lattices