{ "id": "2204.03010", "version": "v1", "published": "2022-04-06T18:00:17.000Z", "updated": "2022-04-06T18:00:17.000Z", "title": "Poset Ramsey number $R(P,Q_n)$. I. Complete multipartite posets", "authors": [ "Christian Winter" ], "comment": "8 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "A poset $(P',\\le_{P'})$ contains a copy of some other poset $(P,\\le_P)$ if there is an injection $f\\colon P'\\to P$ where for every $X,Y\\in P$, $X\\le_P Y$ if and only if $f(X)\\le_{P'} f(Y)$. For any posets $P$ and $Q$, the poset Ramsey number $R(P,Q)$ is the smallest integer $N$ such that any blue/red coloring of a Boolean lattice of dimension $N$ contains either a copy of $P$ with all elements blue or a copy of $Q$ with all elements red. We denote by $K_{t_1,\\dots,t_\\ell}$ a complete $\\ell$-partite poset, i.e.\\ a poset consisting of $\\ell$ pairwise disjoint sets $A^i$ of size $t_i$, $1\\le i\\le \\ell$, such that for any $i,j\\in\\{1,\\dots,\\ell\\}$ and any two $X\\in A^{i}$ and $Y\\in A^{j}$, $X