arXiv:2204.02436 [math.NT]AbstractReferencesReviewsResources
On monogenity of certain pure number fields defined by $x^{2^u\cdot 3^v\cdot 5^t}-m$
Published 2022-04-05Version 1
Let $K = \mathbb{Q} (\alpha) $ be a pure number field generated by a root $\alpha$ of a monic irreducible polynomial $ F(x) = x^{2^u\cdot 3^v\cdot 5^t}-m$, with $ m \neq \pm 1 $ a square free rational integer, $u$, $v$ and $t$ three positive integers. In this paper, we study the monogenity of $K$. We prove that if $m\not\equiv 1\md4$, $m\not\equiv \pm 1\md9$, and $m\not\in\{\pm 1, \pm 7\}\md{25}$, then $K$ is monogenic. But if {$m\equiv 1\md{4}$} or $m\equiv 1\md9$ or $m\equiv -1\md9$ and $u=2k$ for some odd integer $k$ or $u\ge 2$ and $m\equiv 1\md{25}$ or $m\equiv -1\md{25}$ and $u=2k$ for some odd integer $k$ or $u=v=1$ and $m\equiv \pm 82\md{5^4}$, then $K$ is not monogenic.
Comments: arXiv admin note: substantial text overlap with arXiv:2106.01252, arXiv:2112.01133, arXiv:2111.05899, arXiv:2106.00004; text overlap with arXiv:2203.13353
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2102.01967 [math.NT] (Published 2021-02-03)
On monogenity of certain pure number fields defined by $x^{p^r}-m$
arXiv:2206.14345 [math.NT] (Published 2022-06-29)
On monogenity of certain pure number fields of degrees $2^r\cdot3^k\cdot7^s$
arXiv:2106.01252 [math.NT] (Published 2021-06-02)
On power integral bases of certain pure number fields defined by $x^{2^u\cdot3^v}-m$