{ "id": "2204.02436", "version": "v1", "published": "2022-04-05T18:27:46.000Z", "updated": "2022-04-05T18:27:46.000Z", "title": "On monogenity of certain pure number fields defined by $x^{2^u\\cdot 3^v\\cdot 5^t}-m$", "authors": [ "Lhoussain El Fadil" ], "comment": "arXiv admin note: substantial text overlap with arXiv:2106.01252, arXiv:2112.01133, arXiv:2111.05899, arXiv:2106.00004; text overlap with arXiv:2203.13353", "categories": [ "math.NT" ], "abstract": "Let $K = \\mathbb{Q} (\\alpha) $ be a pure number field generated by a root $\\alpha$ of a monic irreducible polynomial $ F(x) = x^{2^u\\cdot 3^v\\cdot 5^t}-m$, with $ m \\neq \\pm 1 $ a square free rational integer, $u$, $v$ and $t$ three positive integers. In this paper, we study the monogenity of $K$. We prove that if $m\\not\\equiv 1\\md4$, $m\\not\\equiv \\pm 1\\md9$, and $m\\not\\in\\{\\pm 1, \\pm 7\\}\\md{25}$, then $K$ is monogenic. But if {$m\\equiv 1\\md{4}$} or $m\\equiv 1\\md9$ or $m\\equiv -1\\md9$ and $u=2k$ for some odd integer $k$ or $u\\ge 2$ and $m\\equiv 1\\md{25}$ or $m\\equiv -1\\md{25}$ and $u=2k$ for some odd integer $k$ or $u=v=1$ and $m\\equiv \\pm 82\\md{5^4}$, then $K$ is not monogenic.", "revisions": [ { "version": "v1", "updated": "2022-04-05T18:27:46.000Z" } ], "analyses": { "subjects": [ "11R04", "11R16", "11R21", "D.2" ], "keywords": [ "pure number field", "monogenity", "square free rational integer", "odd integer", "monic irreducible polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }