arXiv Analytics

Sign in

arXiv:2203.13033 [math.RT]AbstractReferencesReviewsResources

Affine Lie algebras representations induced from Whittaker modules

Maria Clara Cardoso, Vyacheslav Futorny

Published 2022-03-24Version 1

We use induction from parabolic subalgebras with infinite-dimensional Levi factor to construct new families of irreducible representations for arbitrary Affine Kac-Moody algebra. Our first construction defines a functor from the category of Whittaker modules over the Levi factor of a parabolic subalgebra to the category of modules over the Affine Lie algebra. The second functor sends tensor products of a module over the affine part of the Levi factor (in particular any weight module) and of a Whittaker module over the complement Heisenberg subalgebra to the Affine Lie algebra modules. Both functors preserves irreducibility when the central charge is nonzero.

Related articles: Most relevant | Search more
arXiv:math/0610897 [math.RT] (Published 2006-10-29)
On Whittaker modules over a class of algebras similar to $U(sl_{2})$
arXiv:1805.04676 [math.RT] (Published 2018-05-12)
Arakawa-Suzuki functors for Whittaker modules
arXiv:0711.2809 [math.RT] (Published 2007-11-18, updated 2008-06-13)
Root Systems for Levi Factors and Borel-de Siebenthal Theory