{ "id": "2203.13033", "version": "v1", "published": "2022-03-24T12:24:57.000Z", "updated": "2022-03-24T12:24:57.000Z", "title": "Affine Lie algebras representations induced from Whittaker modules", "authors": [ "Maria Clara Cardoso", "Vyacheslav Futorny" ], "categories": [ "math.RT" ], "abstract": "We use induction from parabolic subalgebras with infinite-dimensional Levi factor to construct new families of irreducible representations for arbitrary Affine Kac-Moody algebra. Our first construction defines a functor from the category of Whittaker modules over the Levi factor of a parabolic subalgebra to the category of modules over the Affine Lie algebra. The second functor sends tensor products of a module over the affine part of the Levi factor (in particular any weight module) and of a Whittaker module over the complement Heisenberg subalgebra to the Affine Lie algebra modules. Both functors preserves irreducibility when the central charge is nonzero.", "revisions": [ { "version": "v1", "updated": "2022-03-24T12:24:57.000Z" } ], "analyses": { "subjects": [ "17B67" ], "keywords": [ "affine lie algebras representations", "whittaker module", "levi factor", "second functor sends tensor products", "affine lie algebra modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }