arXiv Analytics

Sign in

arXiv:2203.09069 [math.FA]AbstractReferencesReviewsResources

A Rudin--de Leeuw type theorem for functions with spectral gaps

Konstantin M. Dyakonov

Published 2022-03-17Version 1

Our starting point is a theorem of de Leeuw and Rudin that describes the extreme points of the unit ball in the Hardy space $H^1$. We extend this result to subspaces of $H^1$ formed by functions with smaller spectra. More precisely, given a finite set $\mathcal K$ of positive integers, we prove a Rudin--de Leeuw type theorem for the unit ball of $H^1_{\mathcal K}$, the space of functions $f\in H^1$ whose Fourier coefficients $\widehat f(k)$ vanish for all $k\in\mathcal K$.

Comments: 8 pages; this is an abridged version of arXiv:2102.05857
Journal: C. R. Math. Acad. Sci. Paris 359 (2021), 797--803
Categories: math.FA, math.CA, math.CV
Subjects: 30H10, 30J10, 42A32, 46A55
Related articles: Most relevant | Search more
arXiv:1504.01016 [math.FA] (Published 2015-04-04)
The unit ball of the predual of $H^\infty(\mathbb{B}_d)$ has no extreme points
arXiv:0709.1436 [math.FA] (Published 2007-09-10)
Extended Ces$\acute{a}$RO Operators on Zygmund Spaces in the Unit Ball
arXiv:math/9911021 [math.FA] (Published 1999-11-03)
Slices in the unit ball of a uniform algebra