{ "id": "2203.09069", "version": "v1", "published": "2022-03-17T03:54:12.000Z", "updated": "2022-03-17T03:54:12.000Z", "title": "A Rudin--de Leeuw type theorem for functions with spectral gaps", "authors": [ "Konstantin M. Dyakonov" ], "comment": "8 pages; this is an abridged version of arXiv:2102.05857", "journal": "C. R. Math. Acad. Sci. Paris 359 (2021), 797--803", "doi": "10.5802/crmath.208", "categories": [ "math.FA", "math.CA", "math.CV" ], "abstract": "Our starting point is a theorem of de Leeuw and Rudin that describes the extreme points of the unit ball in the Hardy space $H^1$. We extend this result to subspaces of $H^1$ formed by functions with smaller spectra. More precisely, given a finite set $\\mathcal K$ of positive integers, we prove a Rudin--de Leeuw type theorem for the unit ball of $H^1_{\\mathcal K}$, the space of functions $f\\in H^1$ whose Fourier coefficients $\\widehat f(k)$ vanish for all $k\\in\\mathcal K$.", "revisions": [ { "version": "v1", "updated": "2022-03-17T03:54:12.000Z" } ], "analyses": { "subjects": [ "30H10", "30J10", "42A32", "46A55" ], "keywords": [ "rudin-de leeuw type theorem", "spectral gaps", "unit ball", "finite set", "smaller spectra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }