arXiv Analytics

Sign in

arXiv:2203.03891 [math.PR]AbstractReferencesReviewsResources

Heat kernel estimates for non-local operator with multisingular critical killing

Renming Song, Peixue Wu, Shukun Wu

Published 2022-03-08Version 1

Given a $C^{1,\beta}$ regular open set $D$ with boundary $\partial D = \bigcup_{k=1}^d \bigcup_{j=1}^{m_k} \Gamma_{k,j}$, where for any $1\le k\le d$, $ 1 \le j \le m_k$, $\Gamma_{k,j}$ is a $C^{1,\beta}$ submanifold without boundary of codimension $k$ and $\{\Gamma_{k,j}\}_{1\le k\le d, 1\le j \le m_k}$ are disjoint. We show that the heat kernel $p^D(t,x,y)$ of the following non-local operator with multi-singular critical killing potential \begin{align*} \big((\Delta|_D)^{\alpha/2} - \kappa\big)(f)(x):= \text{p.v.}\mathcal{A}(d,-\alpha) \int_D \frac{f(y)-f(x)}{|y-x|^{d+\alpha}}dy - \sum_{k=1}^d \sum_{j=1}^{m_k} \lambda_{k,j} \delta_{\Gamma_{k,j}}(x)^{-\alpha}f(x), \end{align*} where $ \lambda_{k,j}>0, \alpha \in (0,2), \beta \in ((\alpha-1)_+,1]$, has the following estimates: for any given $T>0$, \begin{align*} p^D(t,x,y) \asymp p(t,x,y) \prod_{k=1}^d \prod_{j=1}^{m_k} (\frac{\delta_{\Gamma_{k,j}}(x)}{t^{1/\alpha}} \wedge 1)^{p_{k,j}}(\frac{\delta_{\Gamma_{k,j}}(y)}{t^{1/\alpha}} \wedge 1)^{p_{k,j}}, \forall t\in (0,T), x,y\in D, \end{align*} where $p(t,x,y)$ is the heat kernel of the $\alpha$-stable process on $\mathbb R^d$, and $p_{k,j}$ are determined by $\lambda_{k,j}$ via a strictly increasing function $\lambda = C(d,k,\alpha,p)$. Our method is based on the result established in [Cho et al. Journal de Math\'ematiques Pures et Appliqu\'ees 143(2020): 208-256] and a detailed analysis of $C^{1,\beta}$ manifolds.

Related articles: Most relevant | Search more
arXiv:1410.8240 [math.PR] (Published 2014-10-30)
Heat kernel estimates for $Δ+Δ^{α/2}$ under gradient perturbation
arXiv:1711.11119 [math.PR] (Published 2017-11-29)
Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances
arXiv:1907.07163 [math.PR] (Published 2019-07-16)
From Harnack inequality to heat kernel estimates on metric measure spaces and applications