{ "id": "2203.03891", "version": "v1", "published": "2022-03-08T07:29:32.000Z", "updated": "2022-03-08T07:29:32.000Z", "title": "Heat kernel estimates for non-local operator with multisingular critical killing", "authors": [ "Renming Song", "Peixue Wu", "Shukun Wu" ], "categories": [ "math.PR", "math.AP" ], "abstract": "Given a $C^{1,\\beta}$ regular open set $D$ with boundary $\\partial D = \\bigcup_{k=1}^d \\bigcup_{j=1}^{m_k} \\Gamma_{k,j}$, where for any $1\\le k\\le d$, $ 1 \\le j \\le m_k$, $\\Gamma_{k,j}$ is a $C^{1,\\beta}$ submanifold without boundary of codimension $k$ and $\\{\\Gamma_{k,j}\\}_{1\\le k\\le d, 1\\le j \\le m_k}$ are disjoint. We show that the heat kernel $p^D(t,x,y)$ of the following non-local operator with multi-singular critical killing potential \\begin{align*} \\big((\\Delta|_D)^{\\alpha/2} - \\kappa\\big)(f)(x):= \\text{p.v.}\\mathcal{A}(d,-\\alpha) \\int_D \\frac{f(y)-f(x)}{|y-x|^{d+\\alpha}}dy - \\sum_{k=1}^d \\sum_{j=1}^{m_k} \\lambda_{k,j} \\delta_{\\Gamma_{k,j}}(x)^{-\\alpha}f(x), \\end{align*} where $ \\lambda_{k,j}>0, \\alpha \\in (0,2), \\beta \\in ((\\alpha-1)_+,1]$, has the following estimates: for any given $T>0$, \\begin{align*} p^D(t,x,y) \\asymp p(t,x,y) \\prod_{k=1}^d \\prod_{j=1}^{m_k} (\\frac{\\delta_{\\Gamma_{k,j}}(x)}{t^{1/\\alpha}} \\wedge 1)^{p_{k,j}}(\\frac{\\delta_{\\Gamma_{k,j}}(y)}{t^{1/\\alpha}} \\wedge 1)^{p_{k,j}}, \\forall t\\in (0,T), x,y\\in D, \\end{align*} where $p(t,x,y)$ is the heat kernel of the $\\alpha$-stable process on $\\mathbb R^d$, and $p_{k,j}$ are determined by $\\lambda_{k,j}$ via a strictly increasing function $\\lambda = C(d,k,\\alpha,p)$. Our method is based on the result established in [Cho et al. Journal de Math\\'ematiques Pures et Appliqu\\'ees 143(2020): 208-256] and a detailed analysis of $C^{1,\\beta}$ manifolds.", "revisions": [ { "version": "v1", "updated": "2022-03-08T07:29:32.000Z" } ], "analyses": { "keywords": [ "heat kernel estimates", "non-local operator", "multisingular critical killing", "regular open set", "multi-singular critical killing potential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }