arXiv Analytics

Sign in

arXiv:2201.09287 [math.NT]AbstractReferencesReviewsResources

Numbers of the form $kf(k)$

Mikhail R. Gabdullin, Vitalii V. Iudelevich

Published 2022-01-23Version 1

For a function $f\colon \mathbb{N}\to\mathbb{N}$, define $N^{\times}_{f}(x)=\#\{n\leq x: n=kf(k) \mbox{ for some $k$} \}$. Let $\tau(n)=\sum_{d|n}1$ be the divisor function, $\omega(n)=\sum_{p|n}1$ be the prime divisor function, and $\varphi(n)=\#\{1\leq k\leq n: (k,n)=1 \}$ be Euler's totient function. We prove that \begin{gather*} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! 1) \quad N^{\times}_{\tau}(x) \asymp \frac{x}{(\log x)^{1/2}}; \\ 2) \quad N^{\times}_{\omega}(x) = (1+o(1))\frac{x}{\log\log x}; \\ \!\!\!\!\!\!\!\!\! 3) \quad N^{\times}_{\varphi}(x) = (c_0+o(1))x^{1/2}, \end{gather*} where $c_0=1.365...$\,.

Related articles: Most relevant | Search more
arXiv:2306.16035 [math.NT] (Published 2023-06-28)
Numbers of the form $k+f(k)$
arXiv:1710.10875 [math.NT] (Published 2017-10-30)
Shifts of the prime divisor function of Alladi and Erdős
arXiv:2505.08434 [math.NT] (Published 2025-05-13)
Explicit formulas for Euler's totient function and the number of divisors