{ "id": "2201.09287", "version": "v1", "published": "2022-01-23T15:07:35.000Z", "updated": "2022-01-23T15:07:35.000Z", "title": "Numbers of the form $kf(k)$", "authors": [ "Mikhail R. Gabdullin", "Vitalii V. Iudelevich" ], "categories": [ "math.NT" ], "abstract": "For a function $f\\colon \\mathbb{N}\\to\\mathbb{N}$, define $N^{\\times}_{f}(x)=\\#\\{n\\leq x: n=kf(k) \\mbox{ for some $k$} \\}$. Let $\\tau(n)=\\sum_{d|n}1$ be the divisor function, $\\omega(n)=\\sum_{p|n}1$ be the prime divisor function, and $\\varphi(n)=\\#\\{1\\leq k\\leq n: (k,n)=1 \\}$ be Euler's totient function. We prove that \\begin{gather*} \\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\! 1) \\quad N^{\\times}_{\\tau}(x) \\asymp \\frac{x}{(\\log x)^{1/2}}; \\\\ 2) \\quad N^{\\times}_{\\omega}(x) = (1+o(1))\\frac{x}{\\log\\log x}; \\\\ \\!\\!\\!\\!\\!\\!\\!\\!\\! 3) \\quad N^{\\times}_{\\varphi}(x) = (c_0+o(1))x^{1/2}, \\end{gather*} where $c_0=1.365...$\\,.", "revisions": [ { "version": "v1", "updated": "2022-01-23T15:07:35.000Z" } ], "analyses": { "keywords": [ "eulers totient function", "prime divisor function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }