arXiv:2201.04291 [math.NT]AbstractReferencesReviewsResources
Congruences for odd class numbers of quadratic fields with odd discriminant
Published 2022-01-12Version 1
For any distinct two primes $p_1\equiv p_2\equiv 3$ $(\text{mod }4)$, let $h(-p_1)$, $h(-p_2)$ and $h(p_1p_2)$ be the class numbers of the quadratic fields $\mathbb{Q}(\sqrt{-p_1})$, $\mathbb{Q}(\sqrt{-p_2})$ and $\mathbb{Q}(\sqrt{p_1p_2})$, respectively. Let $\omega_{p_1p_2}:=\frac{1+\sqrt{p_1p_2}}{2}$ and let $\Psi(\omega_{p_1p_2})$ be the Hirzebruch sum of $\omega_{p_1p_2}$. We show that $h(-p_1)h(-p_2)\equiv h(p_1p_2)\Psi(\omega_{p_1p_2})/n$ $(\text{mod }8)$, where $n=6$ (respectively, $n=2$) if $\min\{p_1,p_2\}>3$ (respectively, otherwise). We also consider the real quadratic order with conductor $2$ in $\mathbb{Q}(\sqrt{p_1p_2})$.
Comments: 17 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:math/0608565 [math.NT] (Published 2006-08-23)
Note on some congruences of Lehmer
arXiv:1201.4341 [math.NT] (Published 2012-01-20)
Congruences for Convolutions of Hilbert Modular Forms
Congruences involving generalized central trinomial coefficients