{ "id": "2201.04291", "version": "v1", "published": "2022-01-12T03:55:23.000Z", "updated": "2022-01-12T03:55:23.000Z", "title": "Congruences for odd class numbers of quadratic fields with odd discriminant", "authors": [ "Jigu Kim", "Yoshinori Mizuno" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "For any distinct two primes $p_1\\equiv p_2\\equiv 3$ $(\\text{mod }4)$, let $h(-p_1)$, $h(-p_2)$ and $h(p_1p_2)$ be the class numbers of the quadratic fields $\\mathbb{Q}(\\sqrt{-p_1})$, $\\mathbb{Q}(\\sqrt{-p_2})$ and $\\mathbb{Q}(\\sqrt{p_1p_2})$, respectively. Let $\\omega_{p_1p_2}:=\\frac{1+\\sqrt{p_1p_2}}{2}$ and let $\\Psi(\\omega_{p_1p_2})$ be the Hirzebruch sum of $\\omega_{p_1p_2}$. We show that $h(-p_1)h(-p_2)\\equiv h(p_1p_2)\\Psi(\\omega_{p_1p_2})/n$ $(\\text{mod }8)$, where $n=6$ (respectively, $n=2$) if $\\min\\{p_1,p_2\\}>3$ (respectively, otherwise). We also consider the real quadratic order with conductor $2$ in $\\mathbb{Q}(\\sqrt{p_1p_2})$.", "revisions": [ { "version": "v1", "updated": "2022-01-12T03:55:23.000Z" } ], "analyses": { "subjects": [ "11R29", "11A55", "11F20" ], "keywords": [ "odd class numbers", "quadratic fields", "odd discriminant", "congruences", "real quadratic order" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }