arXiv:2201.04175 [math.FA]AbstractReferencesReviewsResources
A generalization of the Moreau-Yosida regularization
Published 2022-01-11Version 1
For a function $f:X \rightarrow (-\infty,+\infty]$ on a normed space $(X,\Vert \cdot \Vert)$ and given parameters $p>1$ and $\varepsilon>0$, we investigate the properties of the generalized Moreau-Yosida regularization given by \begin{align*} f_\varepsilon(u)=\inf_{v\in X}\left\lbrace \frac{1}{p\varepsilon} \Vert u-v\Vert^p+f(v)\right\rbrace \quad ,u\in X. \end{align*} We show that the generalized Moreau-Yosida regularization satisfies the same properties as in the classical case for $p=2$ provided $X$ is not a Hilbert space.
Related articles: Most relevant | Search more
arXiv:2205.10633 [math.FA] (Published 2022-05-21)
Certain properties of Generalization of $L^p-$Spaces for $0 < p < 1$
arXiv:2207.05550 [math.FA] (Published 2022-07-11)
A Generalization of $ m $-topology and $ U $-topology on rings of measurable functions
θ-metric spaces: A generalization