{ "id": "2201.04175", "version": "v1", "published": "2022-01-11T19:52:56.000Z", "updated": "2022-01-11T19:52:56.000Z", "title": "A generalization of the Moreau-Yosida regularization", "authors": [ "Aras Bacho" ], "categories": [ "math.FA", "math.AP" ], "abstract": "For a function $f:X \\rightarrow (-\\infty,+\\infty]$ on a normed space $(X,\\Vert \\cdot \\Vert)$ and given parameters $p>1$ and $\\varepsilon>0$, we investigate the properties of the generalized Moreau-Yosida regularization given by \\begin{align*} f_\\varepsilon(u)=\\inf_{v\\in X}\\left\\lbrace \\frac{1}{p\\varepsilon} \\Vert u-v\\Vert^p+f(v)\\right\\rbrace \\quad ,u\\in X. \\end{align*} We show that the generalized Moreau-Yosida regularization satisfies the same properties as in the classical case for $p=2$ provided $X$ is not a Hilbert space.", "revisions": [ { "version": "v1", "updated": "2022-01-11T19:52:56.000Z" } ], "analyses": { "keywords": [ "generalization", "generalized moreau-yosida regularization satisfies", "properties", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }